Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 864-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443579

RESUMO

The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.


Assuntos
Parede Celular , Microbiota , Saccharomycetales , Humanos , Alimentos , Proteínas Recombinantes/genética
2.
Nano Lett ; 24(10): 2961-2971, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477058

RESUMO

The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.


Assuntos
Lipossomos , Nanopartículas , Camundongos , Animais , Humanos , Nanopartículas/química , RNA Interferente Pequeno/genética , Colesterol/química
3.
J Bone Miner Res ; 38(11): 1718-1730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37718532

RESUMO

SNARE proteins comprise a conserved protein family responsible for catalyzing membrane fusion during vesicle traffic. Syntaxin18 (STX18) is a poorly characterized endoplasmic reticulum (ER)-resident t-SNARE. Recently, together with TANGO1 and SLY1, its involvement was shown in ER to Golgi transport of collagen II during chondrogenesis. We report a fetus with a severe osteochondrodysplasia in whom we identified a homozygous substitution of the highly conserved p.Arg10 to Pro of STX18. CRISPR/Cas9-mediated Stx18 deficiency in zebrafish reveals a crucial role for Stx18 in cartilage and bone development. Furthermore, increased expression of multiple components of the Stx18 SNARE complex and of COPI and COPII proteins suggests that Stx18 deficiency impairs antero- and retrograde vesicular transport in the crispant stx18 zebrafish. Taken together, our studies highlight a new candidate gene for a recessive form of osteochondrodysplasia, thereby possibly broadening the SNAREopathy phenotypic spectrum and opening new doors toward future research avenues. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Osteocondrodisplasias/metabolismo , Complexo de Golgi/metabolismo , Cartilagem/metabolismo , Desenvolvimento Ósseo , Transporte Proteico
4.
Curr Biol ; 33(17): 3785-3795.e6, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633282

RESUMO

In flowering plants, two fertilization products develop within the limited space of the seed: the embryo and the surrounding nutritive endosperm. The final size of the endosperm is modulated by the degree of embryo growth. In Arabidopsis thaliana, the endosperm expands rapidly after fertilization, but later gets invaded by the embryo that occupies most of the seed volume at maturity, surrounded by a single remaining aleurone-like endosperm layer.1,2,3,4 Embryo invasion is facilitated by the endosperm-expressed bHLH-type transcription factor ZHOUPI, which promotes weakening of endosperm cell walls.5,6 Endosperm elimination in zou mutants is delayed, and embryo growth is severely affected; the endosperm finally collapses around the dwarf embryo, causing the shriveled appearance of mature zou seeds.5,6,7 However, whether ZHOUPI facilitates mechanical endosperm destruction by the invading embryo or whether an active programmed cell death (PCD) process causes endosperm elimination has been subject to debate.2,8 Here we show that developmental PCD controlled by multiple NAC transcription factors in the embryo-adjacent endosperm promotes gradual endosperm elimination. Misexpressing the NAC transcription factor KIRA1 in the entire endosperm caused total endosperm elimination, generating aleurone-less mature seeds. Conversely, dominant and recessive higher-order NAC mutants led to delayed endosperm elimination and impaired cell corpse clearance. Promoting PCD in the zhoupi mutant partially rescued its embryo growth defects, while the endosperm in a zhoupi nac higher-order mutant persisted until seed desiccation. These data suggest that a combination of cell wall weakening and PCD jointly facilitates embryo invasion by an active auto-elimination of endosperm cells.


Assuntos
Arabidopsis , Endosperma , Endosperma/genética , Arabidopsis/genética , Fatores de Transcrição/genética , Morte Celular , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos
5.
J Thromb Haemost ; 21(8): 2223-2235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001816

RESUMO

BACKGROUND: A disintegrin and metalloprotease 17 (ADAM17) catalyzes platelet glycoprotein (GP) Ibα ectodomain shedding, thereby releasing glycocalicin in plasma. The spatiotemporal control over the enzyme-substrate interaction and the biological consequences of GPIbα shedding are poorly understood. OBJECTIVES: This study aimed to determine the spatiotemporal control over GPIbα shedding by ADAM17. METHODS: Transmission electron microscopy with immunogold staining, immunoprecipitation, and quantitative western blotting were used. RESULTS: Immunogold staining showed that all ADAM17 antigen is expressed intracellularly, irrespective of platelet activation. ADAM17 clustered in patches on a tortuous membrane system different from α- and dense granules. Mild activation by platelet adhesion to immobilized fibrinogen did not cause GPIbα shedding, whereas strong and sustained stimulation using thrombin and collagen (analogs) did. Glycocalicin release kinetics was considerably slower than typical hemostasis, starting at 20 minutes and reaching a plateau after 3 hours of strong stimulation. Inhibition of the ADAM17 scissile bond specifically in GPIbα receptors that reside on the platelet's extracellular surface did not prevent shedding, which is in line with the strict intracellular location of ADAM17. Instead, shedding was restricted to a large GPIbα subpopulation that is inaccessible on resting platelets but becomes partially accessible following platelet stimulation. Furthermore, the data show that proteinaceous, water-soluble ADAM17 inhibitors cannot inhibit GPIbα shedding, whereas membrane permeable small molecule ADAM inhibitors can. CONCLUSION: The data show that platelets harbor 2 distinct GPIbα subpopulations: one that presents at the platelet's surface known for its role in primary hemostasis and one that provides substrate for proteolysis by ADAM17 with kinetics that suggest a role beyond hemostasis.


Assuntos
Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas , Humanos , Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Proteína ADAM17 , Ativação Plaquetária , Metaloproteases/metabolismo , Proteólise , Colágeno
6.
Autophagy ; 19(8): 2217-2239, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36854646

RESUMO

Chaperone-assisted selective autophagy (CASA) is a highly selective pathway for the disposal of misfolding and aggregating proteins. In muscle, CASA assures muscle integrity by favoring the turnover of structural components damaged by mechanical strain. In neurons, CASA promotes the removal of aggregating substrates. A crucial player of CASA is HSPB8 (heat shock protein family B (small) member 8), which acts in a complex with HSPA, their cochaperone BAG3, and the E3 ubiquitin ligase STUB1. Recently, four novel HSPB8 frameshift (fs) gene mutations have been linked to neuromyopathies, and encode carboxy-terminally mutated HSPB8, sharing a common C-terminal extension. Here, we analyzed the biochemical and functional alterations associated with the HSPB8_fs mutant proteins. We demonstrated that HSPB8_fs mutants are highly insoluble and tend to form proteinaceous aggregates in the cytoplasm. Notably, all HSPB8 frameshift mutants retain their ability to interact with CASA members but sequester them into the HSPB8-positive aggregates together with two autophagy receptors SQSTM1/p62 and TAX1BP1. This copartitioning process negatively affects the CASA capability to remove its clients and causes a general failure in proteostasis response. Further analyses revealed that the aggregation of the HSPB8_fs mutants occurs independently of the other CASA members or from the autophagy receptors interaction, but it is an intrinsic feature of the mutated amino acid sequence. HSPB8_fs mutants aggregation alters the differentiation capacity of muscle cells and impairs sarcomere organization. Collectively, these results shed light on a potential pathogenic mechanism shared by the HSPB8_fs mutants described in neuromuscular diseases.Abbreviations : ACD: α-crystallin domain; ACTN: actinin alpha; BAG3: BAG cochaperone 3; C: carboxy; CASA: chaperone-assisted selective autophagy; CE: carboxy-terminal extension; CLEM: correlative light and electron microscopy; CMT2L: Charcot-Marie-Tooth type 2L; CTR: carboxy-terminal region; dHMNII: distal hereditary motor neuropathy type II; EV: empty vector; FRA: filter retardation assay; fs: frameshift; HSPA/HSP70: heat shock protein family A (Hsp70); HSPB1/Hsp27: heat shock protein family B (small) member 1; HSPB8/Hsp22: heat shock protein family B (small) member 8; HTT: huntingtin; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MD: molecular dynamics; MTOC: microtubule organizing center; MYH: myosin heavy chain; MYOG: myogenin; NBR1: NBR1 autophagy cargo receptor; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; NSC34: Neuroblastoma X Spinal Cord 34; OPTN: optineurin; polyQ: polyglutamine; SQSTM1/p62: sequestosome 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TAX1BP1: Tax1 binding protein 1; TUBA: tubulin alpha; WT: wild-type.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Neuromusculares , Humanos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Proteínas de Choque Térmico/metabolismo , Doença de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
7.
Nat Cell Biol ; 25(3): 467-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690850

RESUMO

Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.


Assuntos
Proteínas de Choque Térmico Pequenas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Chaperonas Moleculares/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
8.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
10.
J Control Release ; 350: 256-270, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35963467

RESUMO

Since the recent clinical approval of siRNA-based drugs and COVID-19 mRNA vaccines, the potential of RNA therapeutics for patient healthcare has become widely accepted. Lipid nanoparticles (LNPs) are currently the most advanced nanocarriers for RNA packaging and delivery. Nevertheless, the intracellular delivery efficiency of state-of-the-art LNPs remains relatively low and safety and immunogenicity concerns with synthetic lipid components persist, altogether rationalizing the exploration of alternative LNP compositions. In addition, there is an interest in exploiting LNP technology for simultaneous encapsulation of small molecule drugs and RNA in a single nanocarrier. Here, we describe how well-known tricyclic cationic amphiphilic drugs (CADs) can be repurposed as both structural and functional components of lipid-based NPs for mRNA formulation, further referred to as CADosomes. We demonstrate that selected CADs, such as tricyclic antidepressants and antihistamines, self-assemble with the widely-used helper lipid DOPE to form cationic lipid vesicles for subsequent mRNA complexation and delivery, without the need for prior lipophilic derivatization. Selected CADosomes enabled efficient mRNA delivery in various in vitro cell models, including easy-to-transfect cancer cells (e.g. human cervical carcinoma HeLa cell line) as well as hard-to-transfect primary cells (e.g. primary bovine corneal epithelial cells), outperforming commercially available cationic liposomes and state-of-the-art LNPs. In addition, using the antidepressant nortriptyline as a model compound, we show that CADs can maintain their pharmacological activity upon CADosome incorporation. Furthermore, in vivo proof-of-concept was obtained, demonstrating CADosome-mediated mRNA delivery in the corneal epithelial cells of rabbit eyes, which could pave the way for future applications in ophthalmology. Based on our results, the co-formulation of CADs, helper lipids and mRNA into lipid-based nanocarriers is proposed as a versatile and straightforward approach for the rational development of drug combination therapies.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanopartículas , Animais , Antidepressivos Tricíclicos , Cátions , Bovinos , Combinação de Medicamentos , Reposicionamento de Medicamentos , Células HeLa , Humanos , Lipídeos/química , Lipossomos , Nanopartículas/química , Nortriptilina , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Coelhos
11.
Plant Cell ; 34(8): 2852-2870, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35608197

RESUMO

Plant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen. Here we show that KIRA1-LIKE1 (KIL1), an ortholog of the Arabidopsis NAC (NAM (NO APICAL MERISTEM), ATAF1/2 (Arabidopsis thaliana Activation Factor1 and 2) and CUC (CUP-SHAPED COTYLEDON 2)) transcription factor KIRA1, promotes senescence and programmed cell death (PCD) in the silk strand base, ending the window of accessibility for fertilization of the ovary. Loss of KIL1 function extends silk receptivity and thus strongly increases kernel yield following late pollination. This phenotype offers new opportunities for possibly improving yield stability in cereal crops. Moreover, despite diverging flower morphologies and the substantial evolutionary distance between Arabidopsis and maize, our data indicate remarkably similar principles in terminating floral receptivity by PCD, whose modulation offers the potential to be widely used in agriculture.


Assuntos
Arabidopsis , Arabidopsis/fisiologia , Fertilidade/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Seda/genética , Seda/metabolismo , Zea mays/genética , Zea mays/metabolismo
12.
Curr Biol ; 32(9): 2110-2119.e3, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35390283

RESUMO

Autophagy is a conserved quality control pathway that mediates the degradation of cellular components by targeting them to the lysosomes or vacuoles.1 Autophagy has been implicated in the regulation of some regulated cell death processes in animal systems.2 However, its function in developmentally controlled programmed cell death (dPCD) in plants remains little studied and controversial.3 Some studies have reported autophagy pro-survival roles,4,5 while others have suggested pro-death functions for autophagy,6,7 calling for further detailed investigations. Here, we investigated the role of autophagy in dPCD using the Arabidopsis root cap as an accessible and genetically tractable model system.8 In Arabidopsis, dPCD is an integral part of root cap differentiation, restricting root cap organ size to the root meristem.9 The root cap consists of two distinct tissues: the proximally positioned columella that is located at the very root tip and the lateral root cap (LRC) that flanks the root meristem up to its distal end at the start of the root elongation zone.10 We show that autophagic flux strongly increased prior to dPCD execution in both root cap tissues and depends on the key autophagy genes ATG2, ATG5, and ATG7. Systemic and organ-specific mutation of these genes shows delayed PCD execution and lack of postmortem corpse clearance in the columella but no defects in dPCD execution or corpse clearance in the distal LRC. Our results reveal a high degree of cell-type specificity in autophagy functions and suggest that autophagy roles in dPCD can considerably diverge between different cell types of the same plant organ.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Cadáver , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Plantas/metabolismo
14.
Cell Rep ; 37(13): 110171, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965415

RESUMO

Macrophages are often prominently present in the tumor microenvironment, where distinct macrophage populations can differentially affect tumor progression. Although metabolism influences macrophage function, studies on the metabolic characteristics of ex vivo tumor-associated macrophage (TAM) subsets are rather limited. Using transcriptomic and metabolic analyses, we now reveal that pro-inflammatory major histocompatibility complex (MHC)-IIhi TAMs display a hampered tricarboxylic acid (TCA) cycle, while reparative MHC-IIlo TAMs show higher oxidative and glycolytic metabolism. Although both TAM subsets rapidly exchange lactate in high-lactate conditions, only MHC-IIlo TAMs use lactate as an additional carbon source. Accordingly, lactate supports the oxidative metabolism in MHC-IIlo TAMs, while it decreases the metabolic activity of MHC-IIhi TAMs. Lactate subtly affects the transcriptome of MHC-IIlo TAMs, increases L-arginine metabolism, and enhances the T cell suppressive capacity of these TAMs. Overall, our data uncover the metabolic intricacies of distinct TAM subsets and identify lactate as a carbon source and metabolic and functional regulator of TAMs.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Lactatos/metabolismo , Neoplasias Pulmonares/patologia , Linfócitos T/imunologia , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Glicólise , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Complexo Principal de Histocompatibilidade , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
15.
Front Cell Neurosci ; 15: 757482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720883

RESUMO

Niemann-Pick type C (NPC) disease, sometimes called childhood Alzheimer's, is a rare neurovisceral lipid storage disease with progressive neurodegeneration leading to premature death. The disease is caused by loss-of-function mutations in the Npc1 or Npc2 gene which both result into lipid accumulation in the late endosomes and lysosomes. Since the disease presents with a broad heterogenous clinical spectrum, the involved disease mechanisms are still incompletely understood and this hampers finding an effective treatment. As NPC patients, who carry NPC1 mutations, have shown to share several pathological features with Alzheimer's disease (AD) and we and others have previously shown that AD is associated with a dysfunctionality of the blood-cerebrospinal fluid (CSF) barrier located at choroid plexus, we investigated the functionality of this latter barrier in NPC1 pathology. Using NPC1-/- mice, we show that despite an increase in inflammatory gene expression in choroid plexus epithelial (CPE) cells, the blood-CSF barrier integrity is not dramatically affected. Interestingly, we did observe a massive increase in autophagosomes in CPE cells and enlarged extracellular vesicles (EVs) in CSF upon NPC1 pathology. Additionally, we revealed that these EVs exert toxic effects on brain tissue, in vitro as well as in vivo. Moreover, we observed that EVs derived from the supernatant of NPC1-/- choroid plexus explants are able to induce typical brain pathology characteristics of NPC1-/-, more specifically microgliosis and astrogliosis. Taken together, our data reveal for the first time that the choroid plexus and CSF EVs might play a role in the brain-related pathogenesis of NPC1.

16.
Acta Neuropathol Commun ; 9(1): 143, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425919

RESUMO

Increasing evidence indicates that extracellular vesicles (EVs) play an important role in the pathogenesis of Alzheimer's disease (AD). We previously reported that the blood-cerebrospinal fluid (CSF) interface, formed by the choroid plexus epithelial (CPE) cells, releases an increased amount of EVs into the CSF in response to peripheral inflammation. Here, we studied the importance of CP-mediated EV release in AD pathogenesis. We observed increased EV levels in the CSF of young transgenic APP/PS1 mice which correlated with high amyloid beta (Aß) CSF levels at this age. The intracerebroventricular (icv) injection of Aß oligomers (AßO) in wild-type mice revealed a significant increase of EVs in the CSF, signifying that the presence of CSF-AßO is sufficient to induce increased EV secretion. Using in vivo, in vitro and ex vivo approaches, we identified the CP as a major source of the CSF-EVs. Interestingly, AßO-induced, CP-derived EVs induced pro-inflammatory effects in mixed cortical cultures. Proteome analysis of these EVs revealed the presence of several pro-inflammatory proteins, including the complement protein C3. Strikingly, inhibition of EV production using GW4869 resulted in protection against acute AßO-induced cognitive decline. Further research into the underlying mechanisms of this EV secretion might open up novel therapeutic strategies to impact the pathogenesis and progression of AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Vesículas Extracelulares/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/toxicidade , Animais , Barreira Hematoencefálica/patologia , Células Cultivadas , Plexo Corióideo/patologia , Feminino , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991472

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Assuntos
Colágeno/metabolismo , Cútis Laxa/etiologia , Variação Genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Cútis Laxa/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Linhagem , Pele/metabolismo , Pele/patologia , Peixe-Zebra
18.
Front Mol Biosci ; 8: 639184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959633

RESUMO

Nanotechnology has made an important contribution to oncology in recent years, especially for drug delivery. While many different nano-delivery systems have been suggested for cancer therapy, selenium nanoparticles (SeNPs) are particularly promising anticancer drug carriers as their core material offers interesting synergistic effects to cancer cells. Se compounds can exert cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis, eventually leading to apoptosis induction in many kinds of cancer cells. Herein, we report on the design and synthesis of novel layer-by-layer Se-based nanocomplexes (LBL-Se-NCs) as carriers of small interfering RNA (siRNA) for combined gene silencing and apoptosis induction in cancer cells. The LBL-Se-NCs were prepared using a straightforward electrostatic assembly of siRNA and chitosan (CS) on the solid core of the SeNP. In this study, we started by investigating the colloidal stability and protection of the complexed siRNA. The results show that CS not only functioned as an anchoring layer for siRNA, but also provided colloidal stability for at least 20 days in different media when CS was applied as a third layer. The release study revealed that siRNA remained better associated with LBL-Se-NCs, with only a release of 35% after 7 days, as compared to CS-NCs with a siRNA release of 100% after 48 h, making the LBL nanocarrier an excellent candidate as an off-the-shelf formulation. When applied to H1299 cells, it was found that they can selectively induce around 32% apoptosis, while significantly less apoptosis (5.6%) was induced in NIH/3T3 normal cells. At the same time, they were capable of efficiently inducing siRNA downregulation (35%) without loss of activity 7 days post-synthesis. We conclude that LBL-Se-NCs are promising siRNA carriers with enhanced stability and with a dual mode of action against cancer cells.

19.
Nanoscale ; 13(13): 6592-6604, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885539

RESUMO

Inflammasomes are multi-protein complexes that guard against cellular stress and microbial infections. Inflammasome activation studies frequently require delivery of pathogen-derived virulence factors into the cytosol of macrophages and other innate immune cells. This is a challenging requirement since primary macrophages are difficult-to-transfect, especially when it comes to the intracellular delivery of proteins. Here, we report on the use of nanoparticle-sensitized photoporation as a promising upcoming intracellular delivery technology for delivering proteins of various molecular weights into the cytosol of primary macrophages. While 60-70 nm gold nanoparticles are the most commonly used sensitizing nanoparticles for photoporation, here we find that 0.5 µm iron oxide nanoparticles perform markedly better on primary macrophages. We demonstrate that LFn-FlaA or lipopolysaccharides can be delivered in primary macrophages resulting in activation of the NLRC4 or the non-canonical inflammasome, respectively. We furthermore show that photoporation can be used for targeted delivery of these toxins into selected cells, opening up the possibility to study the interaction between inflammasome activated cells and surrounding healthy cells. Taken together, these results show that nanoparticle-sensitized photoporation is very well suited to deliver pathogenic virulence factors in primary macrophages, thus constituting an effective new enabling technology for inflammasome activation studies.


Assuntos
Inflamassomos , Nanopartículas Metálicas , Ouro , Lipopolissacarídeos , Macrófagos , Nanopartículas Metálicas/toxicidade
20.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467656

RESUMO

Delivery of small interfering RNA (siRNA) provides one of the most powerful strategies for downregulation of therapeutic targets. Despite the widely explored capabilities of this strategy, intracellular delivery is hindered by a lack of carriers that have high stability, low toxicity and high transfection efficiency. Here we propose a layer by layer (LBL) self-assembly method to fabricate chitosan-coated gold nanoparticles (CS-AuNPs) as a more stable and efficient siRNA delivery system. Direct reduction of HAuCl4 in the presence of chitosan led to the formation of positively charged CS-AuNPs, which were subsequently modified with a layer of siRNA cargo molecules and a final chitosan layer to protect the siRNA and to have a net positive charge for good interaction with cells. Cytotoxicity, uptake, and downregulation of enhanced Green Fluorescent Protein (eGFP) in H1299-eGFP lung epithelial cells indicated that LBL-CS-AuNPs provided excellent protection of siRNA against enzymatic degradation, ensured good uptake in cells by endocytosis, facilitated endosomal escape of siRNA, and improved the overall silencing effect in comparison with commercial transfection reagents Lipofectamine and jetPEI®. Therefore, this work shows that LBL assembled CS-AuNPs are promising nanocarriers for enhanced intracellular siRNA delivery and silencing.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , RNA Interferente Pequeno/metabolismo , Biopolímeros/química , Linhagem Celular Tumoral , Sobrevivência Celular , Endocitose , Endossomos/metabolismo , Inativação Gênica , Técnicas de Transferência de Genes , Proteínas de Fluorescência Verde/química , Humanos , Lipídeos/química , Microscopia Confocal , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...